A Permissions Odyssey: A Systematic Study of Browser
Permissions on Modern Websites

Alberto Fernandez-de-Retana
Researcher
Bilbao, Spain
albertof dr@gmail.com

Igor Santos-Grueiro
The International University of La Rioja
Logrofio, Spain
igor.santosgrueiro@unir.net

Abstract

Modern websites behave like OS-native applications and use pow-
erful APIs, such as camera or microphone. To ensure that untrusted
third-party components, such as ads, cannot abuse powerful fea-
tures granted to web applications, these features are governed via
a permission system: containing the Permissions-Policy header
and iframe allow attribute.

Even though the first versions of the permission system were
implemented when browsers first allowed access to powerful fea-
tures more than ten years ago, it is unclear if and how websites
are using the permission system. To answer these questions, we
systematically measured the permission ecosystem across the top
1,000,000 websites.

Our results show that 48.52% of visited websites exhibit permission-
related functionality, and 12.07% of websites delegate permissions
to embedded iframes using the allow attribute. Out of these delega-
tions, many appear overly broad and unused by the iframe, posing a
threat in the context of supply chain attacks. Additionally, only 4.5%
websites use the Permissions-Policy header, and the primary use
case is to turn off powerful APIs such as a camera entirely.

Finally, we developed open-source tools to help developers de-
ploy the correct Permission-Policy header and iframe allow
attributes following the principle of least privilege.

CCS Concepts

«Security and privacy — Privacy protections; Domain-specific
security and privacy architectures; « Information systems —
Web applications.

Keywords

Browser Permissions; Permissions-Policy; Web Measurement

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IMC ’25, Madison, WI, USA

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1860-1/2025/10

https://doi.org/10.1145/3730567.3764489

Jannis Rautenstrauch
CISPA Helmholtz Center for Information Security
Saarbriicken, Germany
jannis.rautenstrauch@cispa.de

Ben Stock
CISPA Helmholtz Center for Information Security
Saarbriicken, Germany
stock@cispa.de

ACM Reference Format:

Alberto Fernandez-de-Retana, Jannis Rautenstrauch, Igor Santos-Grueiro,
and Ben Stock. 2025. A Permissions Odyssey: A Systematic Study of Browser
Permissions on Modern Websites. In Proceedings of the 2025 ACM Internet
Measurement Conference (IMC °25), October 28-31, 2025, Madison, WI, USA.
ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/3730567.3764489

1 Introduction

Nowadays, the World Wide Web has evolved far beyond its original
design as a simple network of static documents [3]. It has trans-
formed into a dynamic and interactive platform, supporting a wide
array of applications, multimedia content, and real-time commu-
nication, fundamentally altering how information is created and
consumed across the globe.

To enable such dynamic web applications, browsers allowed
websites access to more and more powerful features such as camera
or geolocation that were formerly only available to OS-native appli-
cations. Recently, the World Wide Web Consortium (W3C) began
the standardization of the permission ecosystem. They introduced
the Permissions specification [43], that governs how powerful
features should prompt for user’s choice, and the Permissions
Policy specification “that allows developers to selectively enable and
disable use of various browser features and APIs” [42].

There are several studies on how to best display the permission
prompts to users [4, 15, 16], browser differences and misleading
text in the permission prompts [27, 20], and studies on individ-
ual features [28, 6]. Additionally, Kaleli et al. [20] measured the
Feature-Policy header! on 100K websites in 2020, discovering
that among the few websites using the header, most used it to turn
off features. However, the state of the permission ecosystem at scale
remains opaque.

We close this knowledge gap by performing a large-scale mea-
surement on the top 1 million websites. We investigate how many
websites use which permissions and how websites delegate and con-
trol permissions using the Permissions-Policy header and the
iframe allow attribute. To perform the measurement, we built a
pipeline based on Playwright, collected all headers of all documents
on a page, and extracted all iframe attributes. Additionally, we in-
strumented the relevant APIs, dynamically recorded permission
invocations, and collected all scripts to perform a static analysis of
the relevant APIs.

!The predecessor of the Permissions-Policy header.

https://doi.org/10.1145/3730567.3764489
https://doi.org/10.1145/3730567.3764489

IMC ’25, October 28-31, 2025, Madison, W1, USA

Our results show that 48.52% of websites exhibit permission-
related behavior, either dynamically or through static functionality,
while 40.65% called some permission-related API alone. Only on
7.98% of websites, embedded documents called permission-related
APIs, on 39.41% of websites, the call came from the top-level docu-
ment; however, in the majority of cases, it came from third-party
scripts. 12.07% of websites delegated permissions using the allow
attribute, mostly relying on the default value, and 4.5% of websites
used the header, with the vast majority using it to turn off powerful
features such as geolocation, microphone, or camera. Further, more
than 6,000 websites had misconfigured headers with invalid syntax
or semantics. Additionally, we discovered 36,307 iframes that are
potentially over-permissioned as they were delegated a permission,
but we did not observe any permission usage. Also, we discovered
a bug in the specification, affecting browser vendors, that permits
external third party contexts to access permissions, despite the
website specifying a self-only policy, via a local-scheme document
attack. This is the case when the Content-Security-Policy header
of a website does not specify a frame-src directive. Lastly, we cre-
ated tools for developers to learn about the permission ecosystem,
supported permissions and deploy secure headers.

In summary, the contributions of our work are:

e We perform a systematic measurement of the browser per-
mission ecosystem on the top 1,000,000 websites according
to the July 2024 CrUX list [14] (see Section 4).

o We identify the risk of potentially over-permissioned iframes
and present a case study on one Customer Support widgets
that could compromise the security and privacy on at least
13,734 websites (see Section 5).

e We identify limitations of the current specifications and de-
velop tools to allow web developers to deploy the correct
Permissions-Policy header according to the observed per-
mission usage (see Section 6).

e We open-source our framework and tools to support repro-
ducibility, enable future research, and assist web develop-
ers [12].

2 Background

In this section, we introduce the key concepts relevant to our work.
We first introduce how browser permissions generally work and
then explain how the Permissions Policy allows websites to
govern permissions.

2.1 Browser Permissions

Modern web browsers provide various features that enable websites
to offer services with functionalities akin to those of system-wide
applications, such as camera access. These features are governed
by many individual specifications. For example, the Media Capture
and Streams specification [47] defines how browsers handle camera
access and how to expose these functionalities to web developers.

The W3C distinguishes between regular features and powerful
features. Powerful features can pose major privacy, security, and
performance concerns and usually require explicit user consent,
often through a prompt. In addition to the states granted and denied,
powerful features have a third state: prompt. When prompted, users
must actively decide whether to grant or deny access. For instance,

Alberto Fernandez-de-Retana, Jannis Rautenstrauch, Igor Santos-Grueiro, and Ben Stock

when a website requests access to camera, the browser may display
a dialog asking: example.org is asking you to: Use your camera. The
user must then choose to allow or block access.

To ensure a consistent framework for managing powerful fea-
tures, the W3C introduced the Permissions specification [43]. This
specification standardizes an API for querying the permission state
of powerful features (i.e., navigator.permissions.query) and
provides mechanisms to receive notifications when a permission
state changes. For example, a video conferencing website can mon-
itor camera and microphone permissions and immediately trigger
once the user grants access.

2.2 Permissions Policy

Depending on whether a feature is powerful, the browser might
prompt the user for access if it is first used. However, any top-
level code on a website, including third-party libraries, could call
an API that results in a prompt, and it is unclear what happens if
embedded documents use such APIs. To standardize rules for all
features, enhance security and privacy, and allow websites to govern
permissions themselves, the W3C introduced the Permissions
Policy specification [42] 2,

The specification requires other specifications to define default
allow lists for each feature and introduces an HT TP response header
called Permissions-Policy and a corresponding attribute for the
<iframe> HTML element (called allow), allowing websites to gov-
ern permissions. From now on, we call all features in browsers
permissions.

2.2.1 Default Allowlist. The default allowlist decides in which con-
texts a permission can be used by default. There are two possible
default allowlists: self, which allows the permission only in the
same-origin website context, and *, which permits it in all contexts,
including arbitrarily nested third-party iframes. This allowlist can
be further restricted or relaxed using the Permissions-Policy
header or the allow attribute.

2.2.2 Iframe allow Attribute. The allow attribute on iframes can
delegate or restrict permissions to the corresponding iframe. For ex-
ample, a website can use allow=“gamepad ‘none’ ” to restrict an
iframe from using the gamepad permission, or use allow=“camera”
to allow an iframe access to the camera permission. It is important
to note that only permissions that a website has access to itself can
be delegated, and that the permission is only about whether the
corresponding APIs can be called; the browser still decides whether
to prompt the user or not.

2.2.3 Permissions-Policy Header. Unlike the allow attribute, the
Permissions-Policy header can only further restrict the available
permissions. For example, a developer can configure the header
as camera=(), geolocation=(self “https://iframe.com”) to
allow only the main website and an embedded iframe from https:
//iframe.com to request geolocation, while completely disabling
camera access for all contexts. Note that geolocation has a default
allowlist of self and thus, assuming the website is hosted at https:
//example.org, for an iframe to receive this permission, it requires

Formerly known as Feature Policy

A Permissions Odyssey: A Systematic Study of Browser Permissions on Modern Websites

IMC ’25, October 28-31, 2025, Madison, W1, USA

Table 1: Example of Camera Permission Possibility to Prompt and Delegation

Visited Website (example.org)

Embedded (iframe.com)

Top-Level Permissions-Policy Header Camera Prompt and Iframe Delegation Camera Prompt and
Description Header value Delegation Capability HTML allow value | Delegation Capability
1 No header v X
2 No header v camera v
3 deny camera=() X camera X
4 allow self camera=(self) v camera X
5 allow all camera=(*) v X
6 allow all camera=(") v camera v
7 allow necessary camera=(self “https://iframe.com”) v camera v
8 allow iframe camera=("“https://iframe.com”) X camera X

Table 2: Example of Permissions Characteristics

Permission Powerful Policy Default
controlled Allowlist
camera v v self
geolocation v v self
gamepad X v *
notifications v X N/A
push v X N/A

v represents “yes”, X represents “no”.

an allow attribute delegating the permission and no Permissions
-Policy header of the frame itself restricting use of the permission.

2.24 Permissions Policy Example. Whether some JavaScript code
is allowed to call the related APIs and delegate the permission,
depends on the default allowlist of the permission, whether the par-
ent context has access to the permission, the Permissions-Policy
header of the parent context and the own context, and the iframe
allow attribute.

In Table 1 we provide several examples to explain the interplay of
the variables. In these examples, we consider the camera permission,
which has a default allowlist of self; i.e., by default it is only allowed
in same-origin contexts. In the table, we show the header of the
top-level website (example.org), whether the top-level site itself
has access to the permission, the allow attribute of the embedded
iframe (iframe.com) and whether the iframe has access to the
permission. For simplicity, we assume the iframe always uses no
header or a header that allows the permission.

For case #1, no Permissions-Policy header is declared, thus
the browser applies the default allowlist of the permission, which is
self for camera, restricting the permission to the top-level context
and same-origin iframes. However, in case #2, the permission is
explicitly delegated via the allow attribute, and the iframe can
access the camera. Note that the browser prompt would display:
example.org is asking to use your camera instead of listing the site
of the embedded iframe.

v represents “allowed”, X represents “blocked”.

Cases #3 and #4 illustrate how developers can restrict permission
usage through the header. Cases #5 and #6 describe a scenario
where the * policy is broader than the permission’s default allowlist,
resulting in the same results as #1 and #2. Case #7 represents the
optimal header configuration for developers who want to allow
camera access on this specific iframe. The final case #8 highlights a
limitation of the specification: currently, it is impossible to delegate
permissions without also allowing the self context [39].

2.2.5 Common Misconceptions. It is important to note that not all
policy-controlled permissions are powerful features, and not all
powerful features are governed by policies. Table 2 shows various
common permissions with different characteristics, highlighting
which are policy-controlled (and therefore have an allowlist) and
categorized as powerful.

If policy-controlled and powerful permissions are delegated to
an embedded context and prompted for use, they will usually only
reference the visited website and not the embedded document re-
questing the permission. The only permission prompt explicitly
mentioning the embedded document requesting usage is storage-
access.

In addition, once a permission is delegated to an embedded docu-
ment, the developer of the top-level website can no longer prevent
nested delegations. That is in all our examples in Table 1 where the
iframe has access to the permissions, e.g., #7, the iframe can further
delegate this permission to any other nested iframe regardless of
the top-level header and allow attribute.

2.2.6 Support of the Specification by Browser Vendors. The spec-
ification is inconsistently supported across browsers. All major
browsers partly support the allow attribute, but only Chromium-
based browsers support the Permissions-Policy header. Firefox
plans to add support soon [25], and Safari also seems to favor imple-
menting it [50]. Additionally, the Feature-Policy header, which
uses a different syntax, is still supported and enforced in Chromium-
based browsers if there is no Permissions-Policy header.

https://www.w3.org/TR/mediacapture-streams/#permissions-policy-integration
https://www.w3.org/TR/geolocation/#permissions-policy
https://www.w3.org/TR/gamepad/#permission-policy
https://notifications.spec.whatwg.org/#permissiondef-notifications
https://www.w3.org/TR/push-api/#permission

IMC ’25, October 28-31, 2025, Madison, W1, USA

3 Methodology

This section describes the framework used to collect data on re-
sponse headers, permission usage, and permission delegation. We
also present the framework setup, including the website list and
the measurement instantiation process.

3.1 Framework Overview

Our web crawling system, based on the Playwright automation
library [24], collects permissions usage and delegation data from
each frame encountered during website navigation as well as the
response headers. Below, we provide a detailed description of the
data collected.

3.1.1 Permission Usage: To collect permission usage, we use two
approaches: a static method that performs string matching of per-
mission-related Web APIs in the scripts loaded by the website, and
a dynamic method that involves recording the invocation of Web
APIs related to permissions while visiting the website. The static
method identifies cases where a permission may be hidden behind a
user interaction (e.g., clicking a button), while the dynamic method
records actual calls to permission-related functionality while vis-
iting the website. To assess the effectiveness of static analysis in
overcoming lack of interaction, we performed manual testing on
three sets of 25 websites (details in Appendix A.2). Obfuscated calls
remain observable through the dynamic approach. Figure 1 provides
an example of the dynamic technique for recording invocations,
where the original function is overwritten to log the call, stacktrace
and its arguments before executing the original function. It is im-
portant to note that the instrumented function continues to work
as expected. The stacktrace enables us to determine the origin of a
call, recording the origin of the script who invoked the correspond-
ing APIL Additionally, for certain functions that use permissions as
arguments to check their status (e.g., denied), analyzing these argu-
ments enables us to identify which specific permissions are being
checked. The dynamic instrumentation code is injected before the
website is able to execute any content. Both approaches capture
inline or dynamically generated scripts. Refer to the Appendix A.4
for a comprehensive list of all permissions we instrumented. In
addition to the permission-related Web APIs, we also recorded the
general Web APIs defined on the Permissions, Permissions Policy
and the deprecated Feature Policy specifications. In summary, the
joint use of static and dynamic analysis offers the most compre-
hensive perspective, partially addressing the limitations of each
in isolation (see Appendix A.2). Our instrumentation approach is
consistent with practices in related studies in our area [10, 30].

3.1.2 Permission Delegation (Iframe): For documents embedded
as iframes, we collect a predefined list of common attributes of
the HTML <iframe> element in which they are included; id, name,
class, src, allow, sandbox, srcdoc and loading. Particularly im-
portant for our work is the allow attribute that controls the per-
mission delegation. This attribute can contain a single permission
or a list of permissions accompanied by their respective directives.

3.1.3 Website Permission Control (Headers): We collect the Permis-
sions-Policy and Feature-Policy response headers from each
frame in a document, no matter the depth of the frame within

Alberto Fernandez-de-Retana, Jannis Rautenstrauch, Igor Santos-Grueiro, and Ben Stock

// Save original function
var origFunc = navigator.permissions.query;
// Instrument the function
navigator.permissions.query = function (...params) {
// Get call stack
let stacktrace = new Error().stack;
// Save invocation, params and stacktrace
save(params, stacktrace);
// Call original function
return origFunc.apply(this, [...params]);

3

// Simulate website call

navigator.permissions.query({name: 'camera'})

Figure 1: Example of Function Instrumentation.

the document’s structure. We collect the Feature-Policy header
because, despite being deprecated in favor of Permissions-Policy
header, Chromium-based browsers continue to support it.

3.2 Measurement Instantiation

For this work, we used July 2024 CRuX dataset [8, 14] visiting the
top the top 1,000,000 origins. Regarding crawling options, we allow
up to 60 seconds for the website to fully load and trigger the load
event. Following this, the crawler pauses for 20 seconds without
any interaction. During data collection, the only interaction with
the website occurs when a lazy-loaded iframe is detected. To ensure
the embedded document loads and maximize data collection, the
crawler scrolls to the frame, triggering the browser to load it.

We performed the crawl between August 23, 2024, and September
1, 2024, utilizing 40 parallel crawlers. Each website was crawled
once, and the entire process was executed from the same server
and Autonomous System Number (ASN) in Germany (EU).

4 Measurement In The Wild

In this section, we present the results of the analysis of the land-
ing pages of the top 1M websites. Out of these, our measurement
succeeded on 817,800 websites. For websites that could not be suc-
cessfully visited, the failures were primarily: 60,183 websites expe-
rienced error collecting ephemeral content information (e.g., Exe-
cution context was destroyed), 28,700 websites experienced timeouts
waiting for the page loading, 27,733 websites were not reachable
due to major errors (such as DNS errors: ERR_NAME_NOT_RESOLVED),
315 websites exhibited minor errors in the crawler (e.g., unexpected
values from Playwright or website crashing the crawler) and 90
websites provoked a timeout on the last update made after the
specified waiting time on the website. We also applied specific fil-
tering to the collected websites by excluding incomplete iframes
or those with errors. This filtering resulted in the exclusion of a
total of 65,169 websites. These excluded websites include those that
reached a timeout during data collection and ephemeral documents.
The primary factor for excluding most of these websites was the
timeout, which often occurred due to the presence of numerous
included frames on the website. To ensure the completeness of the
analyzed data, we opted to exclude these websites. Furthermore,
excluded websites relative to the total volume of data represents
20% of the overall total, which is consistent with other published
research [31, 32].

A Permissions Odyssey: A Systematic Study of Browser Permissions on Modern Websites

The data collection process took approximately nine days, with
an average of 35 seconds per website. For a total of 817,800 websites,
we collected 2,718,437 frames, consisting of both top-level docu-
ments and embedded frames. Specifically, 1,121,018 frames were
top-level documents (e.g., the initial document load and redirects),
while 1,597,419 were embedded within the website (e.g., iframes).
From this point onward, all comparisons are made with respect
to the documents, rather than the initial list of websites. From
the 1,121,018 visited top-level documents, we identified 1,062,824
distinct origins. Among the websites visited, 545,858 contain at
least one iframe. In this 545,858 websites, there is an average of 3.2
iframe elements included directly. Among the embedded frames,
54.1% are local documents, and 45.9% were loaded from external
URLs. We refer to local document iframes as documents that do not
initiate a network request or include HTTP headers. This includes
Local-Scheme documents (about:, data: and blob:), as defined by
the Fetch Standard [52], and iframes created using the javascript:
scheme.

Table 3: Top 10 External Embedded Documents Site

Embedded Document Site # Websites including

google.com 53,227
youtube.com 28,024
doubleclick.net 25,968
googlesyndication.com 25,299
facebook.com 20,919
yandex.com 18,868
twitter.com 17,844
livechatinc.com 13,776
criteo.com 13,491
cloudflare.com 13,395
Total (any site) 304,865

Table 3 presents the top ten external embedded document sites,
showing how frequently each embedded document appears at least
once on a visited website. The table highlights the dominance of
Google, ads-related and social media services, while also revealing
the popularity of others such as customer support services from
livechatinc.com.

4.1 Permission Usage

This section focuses on the analysis of invocations related to per-
missions and the static analysis in permission-related functionality
embedded in the scripts loaded by websites, including inline scripts.
We report permission usage in three categories. Two categories arise
from dynamic analysis, capturing invocations and status checks,
while the third comes from static analysis. In addition to individ-
ual permissions functionality, we include functions defined in the
Permissions/Feature Policy and Permissions specifications [42, 43],
referred to as General Permissions APIs. For these metrics, and
throughout the results, we count only the first occurrence for each
permission in each frame. This ensures that outliers, which might
repeatedly invoke, check, or present functionality for the same
permission, do not artificially inflate the results. Throughout this

IMC ’25, October 28-31, 2025, Madison, W1, USA

section and the remainder of the paper, we define first-party scripts
as those originating from the same site as the context/document
under analysis, and third-party scripts as those from any other site.

4.1.1 Permissions-related invocations (Dynamic). Starting with the
invocations observed during data collection, a total of 455,676
(40.65%) of the websites we visited show some form of invocation
related to permissions, either by using them or checking the status
of allowed permissions. Specifically, 39.41% of total websites have
invocations in top-level documents, while 7.98% show this activity
in embedded documents. However, although most websites show
permission-related activity in the top-level document, the majority
of this activity comes from third-party scripts. We refer to a third
party when the site of the script differs from the site of the frame.
In cases where the origin of a call is absent from the stack trace
or is an inline script, we classify the call as first-party. Analyzing
the stack trace reveals that 98.32% of unique context invocations
in the top level originate from third-party scripts. Embedded docu-
ments present a different picture, with 74.86% of the activity coming
from first-party scripts. We refer to first-party scripts in an embed-
ded document as those that share the same site as the embedded
document itself, rather than the top-level site.

Table 4 shows the 10 most frequently invoked permission func-
tionalities. The table also indicates whether invocations are made by
first-party or third-party scripts. If both occur in the same context,
it is counted once overall but contributes one to both categories,
which may cause the combined percentages to exceed 100%. Across
455,676 websites with any invocation, we observe 441,831 top-level
documents and 143,863 iframes invoking permission-related APIs,
resulting in a total of 585,694 execution contexts with such ac-
tivity. As shown in the table, for top-level documents, nearly all
calls (98.32%) originate from third-party (3p) scripts, whereas for
embedded documents, the majority (74.86%) of calls come from
first-party (1p) scripts. The most commonly used functionality, by
a significant margin (482,309 unique contexts), involves general
specification APIs [42, 43] that check the permissions allowed in
particular context or the status of a specific permission. General
Permission APIs refer to APIs listed in the Permissions Policy and
Permissions Specification, including those previously referred to
under the deprecated term ‘Feature Policy’. Many of the observed
General Permissions API calls, most of them from third-party scripts
in top-level, may serve benign purposes such as anti-bot detection.
However, they also enable fingerprinting by revealing differences in
permission support across browsers and even across versions of the
same browser. To the best of our knowledge, we are the first to sug-
gest that permission lists could fingerprint browsers and versions,
though our data does not confirm such use. Another scenario is
that scripts access the entire permission list, performing checks as
a prerequisite for execution or to save the state for subsequent user
interactions. Another important observation, discussed in detail in
Section 6, concerns the use of General Permission API invocations.
Specifically, a significant proportion of these invocations originate
from the deprecated Feature Policy API, likely due to the API’s re-
naming not yet being implemented. Notably, 429,259 of the websites
visited, whether in top-level or embedded contexts, still rely on
the Feature Policy API These data suggest that if browser vendors
rename the function, they should consider how many websites still

IMC ’25, October 28-31, 2025, Madison, W1, USA

Alberto Fernandez-de-Retana, Jannis Rautenstrauch, Igor Santos-Grueiro, and Ben Stock

Table 4: Top 10 Permissions Used At Least Once Across Top-Level and Embedded Contexts

Permission

Top-Level Contexts

Embedded Contexts Total

(Invoked by 1P / 3P Scripts %) (Invoked by 1P / 3P Scripts %) Contexts

General Permission APIs [42, 43]
Battery

Notifications

Browsing Topics

Storage Access

Public Key Credentials Get
Geolocation

Encrypted Media

Payment

keyboard-map

432,795 (2.91%/98.77%)
38,217 (14.79%/87.94%)
55,594 (13.88%/89.18%)
16,033 (1.98%/98.05%)
106 (26.42%/73.58%)
5,774 (100%/96.92%)
4,501 (81.03%/19.64%)
1,274 (36.34%/63.89%)
571 (45.01%/54.99%)
862 (62.41%/37.59%)

49,514 (62.44%/38.32%
68,815 (96.83%/3.21%
1,654 (24.12%/77.15%
26,072 (94.96%/5.04% 42,105
16,438 (2.31%/97.69% 16,544

482,309
107,032
57,248

123 (91.06%/8.94% 4,624
996 (23.29%/76.71% 2,270
668 (20.21%/79.79% 1,239

306 (99.02%/0.98% 1,168

Total (any permission)

441,831 (6.54%/98.32%)

)
)
)
)
)
579 (100%/100%) 6,353
)
)
)
)
)

143,863 (74.86%/26.15% 585,694

rely on the old name of the specification. Ranking second, with
107,032 unique contexts, is the Battery permission. As highlighted
in previous research [28], this may indicate potential tracking pur-
poses by accessing the user’s battery level. Ranked third is the
Notification permission, with 57,248 unique calls. This permission
has been extensively discussed in the literature due to its potential
for abuse through unwanted notifications [4, 16]. As a result, the
Notification permission is not policy-controlled: only the top-level
context can request it, and it cannot be delegated. This explains
the high counts at the top level and the low counts in embedded
contexts. The last permission we wish to highlight from the table
is Browser Topics, with 42,105 unique calls. Proposed by Google but
rejected by other vendors such as Mozilla [26] and Safari [49], it still
ranks in fourth position. Overall, permission usage is dominated
by third-party components, either scripts or embedded contexts,
with an exponential decline in activity as rank increases.

Table 5: Top 10 Permission’s Status Checked

Permission % Checked From # Top-Level
Embedded Websites

All Permissions 4.34% 405,302
Attribution Reporting 1.11% 126,565
Browsing Topics 21.23% 40,732
Notifications 5.99% 20,548
Geolocation 11.93% 8,826
Microphone 10.83% 6,905
Run Ad Auction 3.27% 6,512
Camera 10.79% 6,199
MIDI 10.47% 6,066
Push 10.37% 6,064
Total (any permission) 43.1% 435,185

4.1.2 Invocations for Permission Status (Dynamic). Websites or em-
bedded documents may need to determine the status of specific
permissions. To accomplish this, they can utilize general permis-
sion APIs defined in the specifications [42, 43]. 435,185 websites

utilize these functionalities, either at the top level or within em-
bedded documents. Among these websites, 433,555 demonstrate
this activity at least at the top level, while 187,555 exhibit it at least
within embedded documents. For top-level documents that imple-
ment permission status checks for specific permission, the mean
number of permissions checked is 1.74, reaching a maximum of 33
different permissions checked. Table 5 displays the most frequently
checked permissions, ranked by the number of websites where
each permission is checked, whether at the top level or within
embedded documents. Additionally, we present the percentage of
cases in which each specific permission was checked from within
an embedded document. The table illustrates that websites tend
to retrieve the complete list of allowed permissions, rather than
querying individual permissions. Such usage may suggest anti-bot
or tracking behavior, or it may just be retrieving the full permission
list to run a few checks rather than invoking individual calls repeat-
edly. Checking ad-related permissions (e.g., Attribution Reporting) is
also common, while the remaining permissions are checked much
less frequently. The table also shows that powerful permissions
are checked, with the Microphone permission being checked on up
to 6,899 different websites without any user-interaction. Accord-
ing to our data, ad-related permissions are primarily checked by
third-party scripts, while powerful permissions are more commonly
checked by first-party scripts.

4.1.3 Detected Permissions Functionality (Static). 341,924 (30.5%)
of websites visited present permission functionality at any level.
306,914 cases are found at the top level only, with 128,676 cases
occurring solely in embedded contexts. Similar to the previous case,
Table 6 presents the top 10 permissions for which websites have
functionality in their scripts. The lower detection rate, compared to
dynamic analysis, arises because string-based matching does not ac-
count for variable assignments, aliases, or other syntactic variations,
thus failing to identify semantically equivalent calls expressed in
alternative forms or through obfuscation techniques [53].

4.1.4 Summary. 48.52% of the visited websites showcase any per-
mission-related functionality that is either dynamic invocations
or permission-related functionality found in the static analysis.

https://www.w3.org/TR/battery-status/#permissions-policy-integration
https://notifications.spec.whatwg.org/#permissiondef-notifications
https://patcg-individual-drafts.github.io/topics/
https://privacycg.github.io/storage-access/#permissions-policy-integration
https://www.w3.org/TR/webauthn-3/#sctn-permissions-policy
https://www.w3.org/TR/geolocation/#permissions-policy
https://www.w3.org/TR/encrypted-media-2/#permissions-policy-integration
https://www.w3.org/TR/payment-request/#permissions-policy
https://wicg.github.io/keyboard-map/
https://wicg.github.io/attribution-reporting-api/#permission-policy-integration
https://patcg-individual-drafts.github.io/topics/
https://notifications.spec.whatwg.org/#permissiondef-notifications
https://www.w3.org/TR/geolocation/#permissions-policy
https://www.w3.org/TR/mediacapture-streams/#permissions-policy-integration
https://wicg.github.io/turtledove/#permissions-policy-integration
https://www.w3.org/TR/mediacapture-streams/#permissions-policy-integration
https://www.w3.org/TR/webmidi/#permissions-policy-integration
https://www.w3.org/TR/push-api/

A Permissions Odyssey: A Systematic Study of Browser Permissions on Modern Websites

Table 6: Top 10 Statically Detected Permissions

Permission % Functionality # Top-Level
in Embedded Websites
Clipboard Write 38.31% 135,694
Storage Access 67.62% 106,495
Geolocation 33.19% 96,429
Notifications 9.43% 88,953
Battery 50.52% 63,243
Web Share 54.04% 54,995
Browsing Topics 32.49% 50,346
Encrypted Media 79.44% 44,867
Camera 26.87% 26,456
Microphone 26.87% 26,456
Total (any permission) 37.63% 341,924

Table 7: Top 10 External Embedded Documents with Dele-
gated Permissions

Embedded Document Site # Top-Level Websites

googlesyndication.com 20,279
youtube.com 18,044
facebook.com 17,720
doubleclick.net 17,634
livechatinc.com 13,734
cloudflare.com 13,244
criteo.com 4,834
stripe.com 3,582
google.com 2,634
vimeo.com 2,028
Total (any site) 121,043

Permission-related activity is predominantly contributed by third-
party components, both scripts and embedded contexts. Our mea-
surements indicate that most activity is concentrated on a small
number of permissions. Furthermore, much of the observed activity
involves retrieving the full set of available browser permissions.
This may serve to avoid repeated calls for individual permissions, or
as an inefficient way to check a single permission. The permission
list might also be used for anti-bot purposes to confirm an authentic
browser, or for tracking, allowing distinction between browsers
and their versions. Other common permissions observed in our
results are mainly associated with advertising, such as browsing
topics, while others, like battery, geolocation, or keyboard-map, are
possibly used for tracking. Our data also highlights permissions
supporting typical website functionality, for example, encrypted
media for video playback or clipboard-write for sharing links.

4.2 Policy-Controlled Permission Delegation

In the following, we present the results of explicit permission dele-
gation through the allow attribute as defined by the Permissions

IMC ’25, October 28-31, 2025, Madison, W1, USA

Table 8: Top 10 Delegated Permissions to External Embedded
Documents

Permission Delegations # Top-Level

Websites
autoplay 90,566 61,663
encrypted-media 65,513 38,833
picture-in-picture 58,688 36,375
clipboard-write 53,755 34,049
fullscreen 39,630 32,485
attribution-reporting 65,388 25,006
microphone 29,102 24,368
run-ad-auction 54,505 23,689
Jjoin-ad-interest-group 35,702 23,164
gyroscope 36,566 20,005
Total (any permission) 682,883 121,043

Policy Specifications. For simplicity, we consider only directly in-
serted embedded documents and do not account for documents
embedded within other embedded documents.

A total of 135,341 (12.07%) of visited websites delegate permis-
sions to embedded documents in the landing page. When consider-
ing only external URL iframes included in the top level document,
the delegation percentage decreases to 10.8%, amounting to a total
of 121,043 of websites. From this group, a total of 119,778 web-
sites include a third-party iframe with delegation, i.e., a top level
document that loads an embedded document from a different site.
Table 7 presents the most common external embedded documents
with delegated permissions, along with the number of websites
where they appear with delegation. The table shows that Google
Ad services and Youtube media are the most popular, followed by
other social media and multimedia platforms like Facebook. Close
behind, the customer support widget LiveChat appears; however,
unlike the others, it delegates powerful permissions such as camera,
microphone, and display-capture. We explore LiveChat further in
Section 5.1. We identify 34 distinct sites that are present in at least
100 of the most visited websites. However, this number decreases
to just 13 sites that appear in at least 1,000 websites. This indicates
that, although many sites are included through delegated permis-
sions, the number of sites that are consistently present across a
larger set of websites is significantly smaller. In contrast to the
data presented in Table 3, we observe two distinct groups. On one
hand, there are extreme cases where sites, such as yandex.com or
google.com, appear with delegation in a very low percentage of
instances. This shows that their functionality does not require a
specific permission, or that the required permissions are granted
because of a wildcard allowlist. In the case of google.com, only 4.95%
of iframe occurrences include a delegated permission. On the other
hand, certain sites, such as youtube.com and livechatinc.com, are
included with delegation in nearly all cases. For livechatinc.com
when included as an embedded iframe, permission delegation was
present in 99.69% of cases. This may suggest that delegation is
necessary for the intended functionality of these components.

https://w3c.github.io/clipboard-apis/#clipboard-permissions
https://privacycg.github.io/storage-access/#permissions-policy-integration
https://www.w3.org/TR/geolocation/#permissions-policy
https://notifications.spec.whatwg.org/#permissiondef-notifications
https://www.w3.org/TR/battery-status/#permissions-policy-integration
https://www.w3.org/TR/web-share/#permissions-policy
https://patcg-individual-drafts.github.io/topics/
https://www.w3.org/TR/encrypted-media-2/#permissions-policy-integration
https://www.w3.org/TR/mediacapture-streams/#permissions-policy-integration
https://www.w3.org/TR/mediacapture-streams/#permissions-policy-integration
https://html.spec.whatwg.org/multipage/infrastructure.html#policy-controlled-features
https://www.w3.org/TR/encrypted-media-2/#permissions-policy-integration
https://www.w3.org/TR/picture-in-picture/#permissions-policy
https://www.w3.org/TR/clipboard-apis/#clipboard-permissions
https://fullscreen.spec.whatwg.org/
https://wicg.github.io/attribution-reporting-api/#permission-policy-integration
https://www.w3.org/TR/mediacapture-streams/#permissions-policy-integration
https://wicg.github.io/turtledove/
https://wicg.github.io/turtledove/
https://www.w3.org/TR/generic-sensor/#permission-api

IMC ’25, October 28-31, 2025, Madison, W1, USA

4.2.1 Delegated Permissions. To explore the questions related to
the types of delegated permissions, we refer to the data in Ta-
ble 8. Among the most delegated permissions, we find powerful
permissions, such as microphone, or permissions that do not re-
quire delegation because their default is *, like picture-in-picture.
We can infer two things. First, websites that include the delegation
of powerful permissions create a chain of trust with the associated
risks. This associated risk means that if the permission was not
previously granted, it would be requested on behalf of the top-level
document. Second, either embedded document developers do not
understand the standard, are unaware of the policy-controlled per-
mission defaults, expect permission default to change in the future,
or prefer to explicitly name the permissions used in their iframe.
We also observed that permission delegations often exhibit clear
grouping patterns. Based on our data, the primary purposes of
embedded documents with delegated permissions include:

o Ads-Related (e.g., Google Syndication, DoubleClick): attri-
bution-reporting, join-ad-interest-group, and run-ad-auction.

e Social Media and Multimedia (e.g., Youtube, Facebook):
autoplay, clipboard-write, fullscreen, encrypted-media, picture
-in-picture and sensors such as accelerometer.

e Customer Support (e.g., LiveChat, LaDesk): camera, micro-
phone, and display-capture.

e Payment-Related (e.g., Stripe, RazorPay): payment.

o Session-Related (e.g., Google Account): identity-credentials
-get and otp-credentials.

e Others (e.g., Cloudflare, HCaptcha). cross-origin-isolated or
private-state-token-issuance.

Apart from the specific categories, there are cases that may fall
into more than one category. WixApps, included in 246 websites, is
one such example. In this case, it always delegates autoplay, camera,
microphone, geolocation and vr. Through manual investigation, we
suspect that some of these cases, which fall into different categories,
may represent widgets with multiple possible purposes. These cases,
which potentially use a template with all possible used permissions,
delegate permissions that may never be used, thereby creating an
unnecessary security/privacy risk (see Section 5).

4.2.2 Directives of Delegated Permissions. From the directives used
in the delegation, 82.12% of them do not specify an explicit directive
in the delegation, defaulting to src, while 17.17% specify * as the
directive. Defaulting to src means that only the origin specified in
the iframe’s src attribute is permitted. In addition, 0.40% of websites
explicitly set src as the directive, while 0.15% opted out of delegation
by specifying none. A small fraction (0.16%) explicitly restricted
access by allowing only a single source, for example, by setting
a specific src value. The high percentage of wildcard (*) usage
indicates that many developers prioritize convenience over security,
opting for a permissive configuration that may introduce significant
privacy/security risks. The use of the none directive is low, with only
245 instances of embedded content incorporating the directive in
their delegation. Despite some permissions, such as camera access,
previously being on the * default allowlist, and others potentially
changing in the future, this number remains low.

4.2.3 Summary. Our analysis indicates that permission-delegating
widgets are frequent, and a limited set of them are widely deployed

Alberto Fernandez-de-Retana, Jannis Rautenstrauch, Igor Santos-Grueiro, and Ben Stock

Permissions/Feature Policy Header

Depth Frame
BN Top-Level
Iframe
B Total
=]
=]
B
-
o
oy
9]
~
~
0 0.7% 0.0% 0.4% 0.2% 0.0% 0.1%
Neither PP only FP only Both
Condition

Figure 2: Permission Control headers adoption

across the web. The delegation of permissions, as observed from
the data, depends on the functionality of the embedded document,
spanning from ads to customer support. In some cases, such as
general embedded documents with diverse functionalities, a fixed
set of predefined permissions is always delegated, irrespective of
the actual functionality. We find that powerful permissions are
frequently delegated, raising potential concerns, given the risks
associated with such delegation. Furthermore, 82.12% of the dele-
gations, by not specifying a directive, default to src, allowing only
the loaded source to receive the delegation. In contrast, 17.17% of
delegations use the * directive, enabling any origin to access the
delegation, even in the case of redirections.

4.3 Permission Control: Permissions-Policy
Header and Feature-Policy Header

In this section, for analyzing the results, we excluded local docu-
ment iframes (e.g., data:) due to the lack of headers. This approach
excludes embedded documents without headers, preventing bias in
the reported results.

Figure 2 illustrates that the adoption of the Permissions-Policy
header is 7.90%, while the usage of Feature-Policy header is
0.51%. Among the two groups, websites that utilize the Permissions

-Policy header and those that employ the Feature-Policy header,
there exists a small overlap of 2,302 websites that declare both head-
ers. Given the negligible usage of the Feature-Policy header and
its deprecated status, we concentrate exclusively on the Permission-
s-Policy header for the remainder of this section. Our data indi-
cates that 157,048 documents use the header, with 50,469 originating
from top-level documents (4.5% of top-level total) and 106,579 com-
ing from embedded documents (12.3% of embedded total).

The usage of the Permissions-Policy header in iframes is al-
most three times higher than in top-level documents. The main
reason seems to be commonly embedded iframes for applications
like advertisements (e.g., doubleclick.com) or video content (e.g.,
youtube.com) that use the header.

4.3.1 Common Usage in Top-Level Document. Out of 50,469 in-
stances implementing the header, 47,681 are correctly parsed by
the browser. The header, defined in websites declares an average
of 10.01 permissions in the header. The most common number

A Permissions Odyssey: A Systematic Study of Browser Permissions on Modern Websites

IMC ’25, October 28-31, 2025, Madison, W1, USA

Table 9: Top 10 Permissions-Policy header least restrictive directives for Top-Level Documents

Permission Disable Self Same Origin Same Site Third-party All* # Websites
geolocation 23,559 (70.58%) 7,580 (22.71%) 234 (0.70%) 138 (0.41%) 232 (0.70%) 1,637 (4.90%) 33,380 (100%)
microphone 28,248 (89.55%) 2,546 (8.07%) 7 (0.02%) 27 (0.09%) 77 (0.24%) 638 (2.02%) 31,543 (100%)
camera 27,070 (87.74%) 2,884 (9.35%) 6 (0.02%) 16 (0.05%) 90 (0.29%) 786 (2.55%) 30,852 (100%)
gyroscope 23,745 (93.54%) 1,264 (4.98%) 0 (0.00%) 15 (0.06%) 24 (0.09%) 336 (1.32%) 25,384 (100%)
payment 21,933 (86.62%) 1,845 (7.29%) 4 (0.02%) 6 (0.02%) 65 (0.26%) 1,467 (5.79%) 25,320 (100%)
magnetometer 23,765 (94.33%) 1,126 (4.47%) 0 (0.00%) 7 (0.03%) 0 (0.00%) 296 (1.17%) 25,194 (100%)
accelerometer 21,208 (93.28%) 1,162 (5.11%) 0 (0.00%) 10 (0.04%) 31 (0.14%) 326 (1.43%) 22,737 (100%)
usb 21,014 (94.57%) 1,068 (4.81%) 0 (0.00%) 7 (0.03%) 2 (0.01%) 130 (0.59%) 22,221 (100%)
sync-xhr 16,258 (80.29%) 2,694 (13.30%) 211 (1.04%) 73 (0.36%) 73 (0.36%) 940 (4.64%) 20,249 (100%)
interest-cohort 18,904 (99.13%) 117 (0.61%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 49 (0.26%) 19,070 (100%)

Total (any permission) 398,356 (83.5%) 46,203 (9.68%)

508 (0.11%)

757 (0.16%) 2,533 (0.53%) 28,701 (6.02%) 47,681

of permissions defined in the header are 18 (26.62%), 1 (24.33%),
and 9 (8.47%) permissions. These groups of defined permissions
suggest that developers are copy-pasting directives from online
sources. The maximum number of declared permissions is 64. Based
on our tool [11], none of the websites implement a directive for
all supported policy-controlled permissions. Table 9 presents the
most commonly declared directives for top 10 permissions in the
Permissions-Policy headers of top-level visited websites. In the
table, we report the least restrictive configuration observed. Thus,
if a website specifies that display-capture may only be used in its
own context self and in third party iframe (e.g., ads.com), it would
be counted as one directive for third-party, plus one in the number
of websites declaring the permission. As the table shows, 83.5% of
websites — which deploy the header — completely disable the use of
features. Another 9.68% restrict their use to their own context, with
these two cases accounting for a total of 93.19%. If we consider only
powerful permissions, permissions that need user interaction, the
percentage of websites declaring a disable or self directive increases
to 97.08%. The table also shows that using specific directives to de-
clare the origin of embedded documents is not very prevalent. Most
websites do not utilize most of the permissions, and developers
often use the header to disable a subset in order to mitigate security
and privacy risks. Finally, 6.02% of websites declared directives with
“* which has no real effect, as the header is designed for restricting
permissions, not for allowing them. This directive may suggest that
developers are explicitly indicating the use of the feature.

4.3.2 Common Usage in Embedded Documents. In the case of em-
bedded documents, contrary to what is shown in Table 9 for top-
level headers, the nine most prevalent permission directives are for
features related to User-Agent Client Hints [48]. In these features,
the most common directive for these permissions is to allow all (),
which, as explained, effectively has no impact because the header
can only enforce restrictions. In the case of the declared directives,
disabling permissions is significantly less frequent compared to
top-level documents, accounting for 51.05%. Directives for own
context make up 16.89%, while those allowing all (‘**’) represent
30.73%. In contrast to top-level documents, where 56.29% of total di-
rectives pertain to powerful permissions, this figure drops to 26.30%
in embedded documents. Although the picture may be influenced

by some of the widely used social media and video entertainment
iframes, it might still reflects the pattern that, in embedded docu-
ments, there is less concern about opting out of permissions that
are not being used.

4.3.3 Misconfigurations. Of the 157,048 frames analyzed, com-
prising both top-level documents and iframes that declare the
Permissions-Policy header, 3,244 (2%) contain syntax errors that
results in the browser removing the complete header and not apply-
ing the policy. Although the number of cases is small, developers
declaring this header, often to enhance the security and privacy of
their site, create parsing errors that result in 2,788 of the websites
and 456 of embedded documents lacking any permission restric-
tion. These parsing errors in the header causes these websites to
fall back to the default permission allowlists. An example of a
common parsing error we found is declaring the header using the
Feature-Policy header syntax. Another common case are mis-
placed commas, such as ending the header with a comma making
the header invalid. Among the headers that parse correctly, we iden-
tified another 6,408 visited websites with misconfigurations, such as
unrecognized tokens (e.g., none or 0), missing double quotes around
urls, contradictory directives (e.g., self and *), or url directives
lacking self, which is not allowed [39]. In embedded documents,
this number decreases to 653 visited websites that included an
embedded document with a misconfigured header. This pattern
suggests that, although less complex than other header solutions
like Content Security Policy [51], developers still face challenges
when implementing it.

4.3.4 Summary. Based on the presented data, we can conclude that
website developers tend to use the header to opt-out of features,
such as for mitigating potential misuse on their sites, while em-
bedded document developers typically use the header to explicitly
not opt them out without any effect or explicitly indicating the use
of the permission. Moreover, developers struggle with deploying
the header without making mistakes, declaring directives for all
supported policy-controlled permissions, and in the vast majority
of cases, only simple directives are implemented. More than 50% of
top-level websites adopt one of three identical configurations in the
Permissions-Policy header, likely reflecting the use of predefined
templates.

https://www.w3.org/TR/geolocation/#permissions-policy
https://www.w3.org/TR/mediacapture-streams/#permissions-policy-integration
https://www.w3.org/TR/mediacapture-streams/#permissions-policy-integration
https://www.w3.org/TR/generic-sensor/#permission-api
https://www.w3.org/TR/payment-request/#permissions-policy
https://www.w3.org/TR/generic-sensor/#permission-api
https://www.w3.org/TR/generic-sensor/#permission-api
https://wicg.github.io/webusb/#permissions-policy
https://xhr.spec.whatwg.org/#feature-policy-integration
https://patcg-individual-drafts.github.io/topics/#permissions-policy-integration-header

IMC ’25, October 28-31, 2025, Madison, W1, USA

Alberto Fernandez-de-Retana, Jannis Rautenstrauch, Igor Santos-Grueiro, and Ben Stock

Table 10: Top 10 Embedded Documents with Unused Delegated Permissions

Embedded Iframe Potentially Unused Permissions # Affected Websites
youtube.com accelerometer, gyroscope 16,394
livechatinc.com camera, microphone, clipboard-read 13,734
facebook.com clipboard-write, web-share, encrypted-media 1,405
youtube-nocookie.com gyroscope, accelerometer 982
razorpay.com payment, clipboard-write, camera 389
ladesk.com microphone, camera 303
driftt.com encrypted-media 285
wixapps.net microphone, camera, geolocation 246
qualified.com microphone, camera 109
dailymotion.com accelerometer, gyroscope, clipboard-write, web-share, encrypted-media 101
Total (any iframe) 36,307

5 Permission Delegation to Embedded Iframes

In this section, we analyze embedded documents running with dele-
gated permissions. In particular, we examine whether the embedded
documents with delegated permissions actually require those per-
missions for their functionality. To determine this, we compare the
delegated permissions (Section 4.2) with the dynamic functionality
recorded during navigation and the static functionality present on
the loaded scripts (Section 4.1). In addition, we present a case study
of one of the most common Customer Support widgets.

The threat models for permission delegation have been initially
described by other researchers [21, 20]. In this section, we consider
a threat model similar to supply chain attacks [2], where a widely
embedded document is commonly deployed with delegated permis-
sions. The data from the previous section confirms this is a realistic
scenario. When such permissions are granted by default and remain
unused, they introduce unnecessary risk, potentially enabling user
permission hijacking via the embedded document. As an exam-
ple scenario of the threat model, consider support.example.org, a
Customer Support widget embedded in thousands of websites. This
widget is always included in an embedded document with powerful
permission (e.g., clipboard read) delegation. If a malicious entity
is able to compromise this embedded document, they could hijack
permissions across thousands of websites.

To establish an upper bound for potentially over-permissive em-
bedded documents, we first collected, for each embedded origin,
all delegated permissions that appeared in at least 5% of iframes
of this origin. We selected the 5% threshold as a way to capture
the most prevalent delegated permissions while minimizing noise.
On the other hand, for each embedded document, we collected all
permission-related activity, whether they directly used the permis-
sion, checked its status, or included permission-related functionality
in the loaded scripts, including dynamically created scripts. With
these two cases, we establish a method to verify that the appearance
of a delegated permission is not a one-time event, as delegation
occurs in at least 5% of cases, while the embedded document do
not exhibits any form of functionality for the permission across the
entirety of the recorded data.

Table 10 show the top ten embedded documents with delegated
permissions that are not utilized nor contain any related API calls in

their scripts. We also include the number of websites that delegate
at least one of these permissions. The total number of affected
websites which include any of the embedded documents delegating
unused permission is 36,307 of the visited websites. Considering
the delegated permissions, the most risky embedded documents
are Customer Support widgets.

5.1 Customer Support Widgets

Customer Support widgets are embedded within top-level docu-
ments to offer support functionalities and improve communica-
tion with the associated businesses. A common example of these
Customer Support widgets are the chat features with company
representatives, often appearing in the corner of a website to fa-
cilitate question-asking. In most cases, these chat widgets provide
basic functionality, which can be enhanced through premium sub-
scriptions or by adding new plugins from their respective market-
places [22]. We analyze one prevalent case of chat widget that have
the potential to undermine the security and privacy of websites.

5.2 LiveChat Case Study

The first case is the LiveChat widget [23], which is integrated into
a total of 13,753 different websites, with 27 of these appearing
among the top 5,000 as reported by CrUX. Of this total, 13,734 web-
sites exhibit overpermissioning. Their widgets do not utilize the
Permissions-Policy header to mitigate potential risks and are
consistently (99.70% of the times) included in the top-level docu-
ment with the delegation of permissions: ‘clipboard-read; clipboard-
write; autoplay; microphone *; camera *; display-capture *; picture-in-
picture *; fullscreen *;. In some of these delegations, they introduce
potential risks by using wildcards instead of specifying the origin
which uses the permissions. The wildcard directive indicates that
redirecting the embedded document to a different origin would also
delegate the associated permissions making the hijacking possible.
Additionally, the fact that all LiveChat widgets utilize the same
permission delegations may imply adherence to a template that
systematically enforces these delegations, irrespective of the plu-
gins used and the permissions that are essential. Thus, embedded
documents are always included with the same delegation, unaware
of the plugins installed from the marketplace [22] by developers.

A Permissions Odyssey: A Systematic Study of Browser Permissions on Modern Websites

During our investigation, we found no instances of these widgets
performing any permission-related invocations, such as verifying
the permitted features nor could we identify the APIs through
static analysis of the included scripts. Through a manual analysis
by setting up our own LiveChat chat widget, we confirmed that even
without plugins installed, the permission delegation remains consis-
tent, indicating that the same template is always used. Additionally,
after installing free video-conferencing plugins, we observed that
the permissions, such as microphone and camera, were not being
utilized. In some cases, instead of requesting permission for these
features, the plugin would send a message including a meeting url
to an external service.

5.3 Recommendations

In chat widgets and other potential cases from Table 10, delegat-
ing permissions may be necessary to enable specific functional-
ities. However, our findings indicates that permissions are often
delegated and then not utilized. In particular, customer support
widgets seem to be running overpermissioned. When delegation
is indeed required, widget developers should implement existing
control mechanisms and avoid using wildcards in their permission
delegations to ensure only the legitimate widget can use the per-
mission. Furthermore, permissions should only be delegated when
absolutely necessary. Failure to adhere to these best practices could
pose significant risks to the top-level website, especially when a
permission has already been granted previously. In such cases, the
external URL could use the permission, even if the delegation oc-
curred after the permission was granted. Additionally, for website
developers, the solution is to explicitly declare the header to disable
permissions that are not required for the website’s functionality.

6 Discussion

This section outlines our work’s limitations and the specification
shortcomings revealed by our research, which highlight challenges
for developers. We also present a specification issue affecting Chrom-
ium-based browsers and propose two solutions to help developers
deploy the Permissions-Policy header and permission delegation
effectively, even in complex cases.

6.1 Limitations

One limitation of our work is the lack of interaction with the web-
site [19, 54], which is partly mitigated by our hybrid approach
incorporating the static analysis of scripts for permissions APIs.
This lack of interaction may limit the results presented in our study
leading to conservative underreporting, such as websites utilizing
permissions only after specific interactions (e.g., clicking a button,
accepting cookie banner). While static analysis might compensate
for the lack of interaction (see Appendix A.2), it may miss obfus-
cated code and may also report permission functionality contained
in dead code that will never be triggered. Dynamic instrumenta-
tion instruments only static property accesses, method calls, and
object instantiations, without tracking subsequent interactions. For
instance, if a page retrieves all allowed features and later checks
for a specific one, only the initial retrieval is observed, not the later
check. To better understand the limitations of our no-interaction ap-
proach, we conducted a small-scale manual experiment, described

IMC ’25, October 28-31, 2025, Madison, W1, USA

in Appendix A.2. Another limitation is that our crawler is restricted
to the landing page, which limits visibility into features and per-
mission usage that may only appear after navigating through the
website [1, 33]. In addition, our automated crawler could be detected
by websites, potentially leading to different content being served
compared to genuine user visits [18]. Finally, another limitation of
this work is the potential bias in results caused by conducting the
navigation exclusively from Germany (EU) [5, 19, 34].

6.2 Shortcomings in Specifications

The W3C’s proposal of these specifications, along with the browser
vendors’ agreement on a unified permission model, is promising
news for improving the security and privacy of modern websites.
However, as other studies and our work have shown, there is still
much to be done in the development and adoption of these specifi-
cations by both browser vendors and websites.

A key limitation of the current Permissions-Policy specification
is the absence of an up-to-date list of existing permissions [40, 46],
combined with the lack of a default disallow all directive [38]. The
lack of an up-to-date permission list creates confusion for develop-
ers [37], while requiring each permission to be explicitly disallowed
increases the risk of omissions. Our measurements show that no
websites using the header specify a directive for all supported per-
missions, highlighting the need for a developer-friendly solution.
To help address this gap, our open-source tool maintains a curated
list of known permissions along with their browser support status
(see Figure 3 in Appendix A.6) [11].

A second limitation that must be considered when advancing
the specification is the prevalent use of deprecated Feature Policy
Web APIs. Browser vendors currently lack support for the Permis-
sions Policy specification (e.g., Permissions Policy Web API), and
many functionalities within the web ecosystem, as demonstrated
in Section 4, continue to depend on old specification functions (e.g.,
Feature Policy Web API).

Considering these issues, along with the fact that the header
is currently only implemented in Chromium-based browsers [36],
it is evident that the development and adoption of the specifica-
tion are progressing slowly. Furthermore, the complexities in the
specification or the renaming of the header have led to numerous
questions from developers [41, 45], who do not fully understand
its implementation, contributing to this slow adoption. In our data,
one of the most common header misconfigurations was the use of
Feature-Policy syntax within the Permissions-Policy header.

Specification Issue/Local-Scheme document attack. We detail a spec-
ification issue manually identified in the Permissions Policy specifi-
cation during our research, which consequently affects all Chromiu-
m-based browsers. In the code associated with this research [12], we
provide a proof of concept (PoC) that enables testing the specifica-
tion issue in your browser [13]. This issue has been acknowledged
but remains unresolved [44]. Details of the responsible disclosure
are provided in the Appendix A.1. The identified specification issue
causes local-scheme documents (e.g., data URIs) not to inherit the
policies of their parent documents. Table 11 presents an example.
If a website (example.org) declares a Permissions Policy directive
of ’self” for a specific permission (e.g., camera=(self)), creating a
local-scheme document (such as a data URI or about:srcdoc) can

IMC ’25, October 28-31, 2025, Madison, W1, USA

Alberto Fernandez-de-Retana, Jannis Rautenstrauch, Igor Santos-Grueiro, and Ben Stock

Table 11: Example of Behavior and the Specification Issue Found

example.org ‘

Local-Scheme document (data: URI)

‘ third-party.com/attacker.com

Permissions-Policy Header

Camera Access/Prompt and

Iframe Delegation =~ Camera Access/Prompt and

camera directive value Delegation Capability HTML allow value Delegation Capability
Expected camera self: self v delegate: camera X
Actual Specification camera self: self v delegate: camera v Xk [44]

bypass the declared policy, allowing the delegation of that permis-
sion to an external URL. As presented in Section 4, this policy is the
second most common. This discovered specification issue can lead
to unintended behavior, potentially allowing third-party actors—or
worse, malicious entities—to exploit it and bypass the restriction
efforts implemented by developers. It is worth mentioning that, at
present, the ‘self” directive is required even when only delegating
permissions to embedded documents [39]. This bypass could be
effective in scenarios where a victim website uses the self direc-
tive alongside a strict Content Security Policy (CSP) that mitigates
cross-site scripting. In such cases, an attacker could exploit HTML
injection to perform permission hijacking if the CSP does not en-
force frame restrictions. At worst, an existing permission could be
silently hijacked, bypassing the need for user consent.

6.3 Facilitating Defense Deployment

The Permissions Policy header for controlling the use of powerful
features still has a low adoption rate. Additionally, the inclusion
of embedded documents with delegated permissions may further
increase the risk of undermining the security and privacy of web-
sites. One of the goals of our work is to facilitate the adoption of
this protection and safeguard the vast majority of websites, regard-
less of whether they do not intend to use most of the features. To
achieve this, we present two solutions.

First, we introduce a website (see Figure 3 in Appendix A.6) [11]
that, to the best of our knowledge, provides the most comprehen-
sive list of permissions. The website, similar to caniuse [35], also
details which permissions are supported and whether they are
classified as policy-controlled or powerful by different browser ven-
dors. All these results are generated by an automated tool that tests
permissions across major browser releases. Our tool also tracks
historical changes across browser versions and includes references
to the W3C specifications that define each permission. Consistent
with the rest of our contributions, the tool and website are made
available as open-source [11].

Additionally, the website contains a Permissions-Policy header
generator (see Figure 4 in Appendix A.7). Based on the supported
permissions across browser vendors, it allows developers to cre-
ate their own custom header. This supported-permissions list is
generated using our previously described tool, keeping it up-to-
date with browser changes and ensuring reliable header generation.
Additionally, it provides predefined options, such as disabling all
permissions or, more commonly, disabling only powerful permis-
sions. Finally, this generator is integrated into the same website

v represents “allowed”, X represents “blocked”.

that displays the supported-permissions list and is also released as
open-source [11].

As a second solution, more suited for complex scenarios, we
introduce a tool, similar to our crawler, that interacts with websites
by crawling them and allowing developer interaction (e.g., click).
After the developer interacts with the site, the tool suggests an
appropriate Permissions-Policy header and delegation based on
observed functionality. Its recommendations rely on the same data
used in our study, including header configurations, permission
usage, and delegation behavior. Additionally, the tool highlights
instances where the actual configuration is broader than the ideal
configuration.

7 Related Work

Our work builds on a long tradition of research into web headers
for enhancing security and privacy such as like Content Security
Policy (CSP) [51, 29], X-Frame-Options (XFO) [29], and Feature-
Policy [20]. In addition, previous studies have examined the user
experience with browser permission prompts [16, 15], the rationale
behind permissions displayed by websites [9], attack models for
permission model [20], and the role of individual permissions in
enabling tracking [28, 6]. Other research highlighted inconsisten-
cies across browsers in implementing permission mechanisms [27].
Our study complements the existing research by offering the most
comprehensive view of the permission ecosystem, focusing on the
Permissions-Policy header, permission usage, and delegation.

8 Conclusion

In recent years, web browsers have introduced new features. To
control these capabilities, the web platform provides a permission
system through the Permissions-Policy header and iframe allow
attributes. This paper presents the first systematic study of the per-
mission ecosystem across 1M websites. We find that while 48.5% of
websites use permission-related functionality, only 4.5% deploy the
header, primarily to disable powerful APIs. Moreover, 12% of web-
sites delegate permissions to embedded documents, often granting
overly broad access that is not used, posing security and privacy
risks. In addition, our analysis identifies 36,307 websites embedding
documents that may run with more permissions than necessary.
To assist web developers, we introduce manual and automated so-
lutions for applying permission controls effectively. We further
uncover a bug in the specification that impacts Chromium-based
browsers and publish our tool as open-source to support repro-
ducibility and future work.

A Permissions Odyssey: A Systematic Study of Browser Permissions on Modern Websites

References

(1]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]
(18]

[19]

[20]

[21]

[22]
[23]

[24]

Wagqar Ageel, Balakrishnan Chandrasekaran, Anja Feldmann, and Bruce M.
Maggs. 2020. On landing and internal web pages: the strange case of jekyll and
hyde in web performance measurement. In Proceedings of the ACM Internet
Measurement Conference. (2020). doi:10.1145/3419394.3423626.

Zbigniew Banach. 2024. Polyfill supply chain attack: what to do when your
cdn goes evil. https://www.invicti.com/blog/web- security/polyfill- supply-
chain-attack-when-your-cdn-goes-evil/.

Tim Berners-Lee. 1989. Information management: a proposal. https://www.w3.
org/History/1989/proposal.html.

Igor Bilogrevic, Balazs Engedy, Judson L Porter Iii, Nina Taft, Kamila Hasan-
bega, Andrew Paseltiner, Hwi Kyoung Lee, Edward Jung, Meggyn Watkins,
PJ McLachlan, and Jason James. 2021. “shhh. be quiet!” reducing the unwanted
interruptions of notification permission prompts on chrome. In 30th USENIX
Security Symposium.

Adrian Dabrowski, Georg Merzdovnik, Johanna Ullrich, Gerald Sendera, and
Edgar Weippl. 2019. Measuring cookies and web privacy in a post-gdpr world.
In Passive and Active Measurement. David Choffnes and Marinho Barcellos,
(Eds.) doi:10.1007/978-3-030-15986-3_17.

Anupam Das, Nikita Borisov, and Matthew Caesar. 2016. Tracking mobile
web users through motion sensors: attacks and defenses. In Network and
Distributed System Security Symposium. doi:10.14722/ndss.2016.23390.
Nurullah Demir, Matteo Grof3e-Kampmann, Tobias Urban, Christian Wressneg-
ger, Thorsten Holz, and Norbert Pohlmann. 2022. Reproducibility and replica-
bility of web measurement studies. In Proceedings of the ACM Web Conference
2022. (2022). doi:10.1145/3485447.3512214.

Zakir Durumeric and David Adrian. 2024. Chrome ux july 2024 snapshot. https:
//github.com/zakird/crux-top-lists/blob/main/data/global/202406.csv.gz.
Yusra Elbitar, Soheil Khodayari, Marian Harbach, Gianluca De Stefano, Bal-
azs Csaba Engedy, Giancarlo Pellegrino, and Sven Bugiel. 2025. Permission
rationales in the web ecosystem: an exploration of rationale text and design
patterns. Pre-published.

Steven Englehardt and Arvind Narayanan. 2016. Online tracking: a 1-million-
site measurement and analysis. In Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security. (2016). doi:10.1145/2976749.
2978313.

Alberto Fernandez-de-Retana, Jannis Rautenstrauch, Igor Santos-Grueiro, and
Ben Stock. 2025. Browser permissions compatibility and header generator
website. https://albertof dr.github.io/browser-permissions-tool/.

Alberto Fernandez-de-Retana, Jannis Rautenstrauch, Igor Santos-Grueiro, and
Ben Stock. 2025. Permissions odyssey: source code repository. https://zenodo.
org/records/16921477.

Alberto Fernandez-de-Retana, Jannis Rautenstrauch, Igor Santos-Grueiro, and
Ben Stock. 2025. Specification issue proof-of-concept repository. https://github.
com/AlbertoFDR/browser- permissions- odyssey/tree/main/specification-
issue-poc/.

Google. 2024. Chrome ux report. https://developer.chrome.com/docs/crux/.
Marian Harbach. 2024. Websites need your permission too — user sentiment
and decision-making on web permission prompts in desktop chrome. In CHI
Conference on Human Factors in Computing Systems. (2024). doi:10.1145/
3613904.3642252.

Marian Harbach, Igor Bilogrevic, Enrico Bacis, Serena Chen, Ravjit Uppal, Andy
Paicu, Elias Klim, Meggyn Watkins, and Balazs Engedy. 2024. Don’t interrupt
me - a large-scale study of on-device permission prompt quieting in chrome.
In Network and Distributed System Security Symposium. doi:10.14722/ndss.
2024.24108.

HTTP Archive Project. 2025. Http archive dataset. har.fyi. https://har.fyi/.
Hugo Jonker, Benjamin Krumnow, and Gabry Vlot. 2019. Fingerprint surface-
based detection of web bot detectors. In Computer Security — ESORICS 2019.
Kazue Sako, Steve Schneider, and Peter Y. A. Ryan, (Eds.) doi:10.1007/978-3-
030-29962-0_28.

Jordan Jueckstock, Shaown Sarker, Peter Snyder, Aidan Beggs, Panagiotis
Papadopoulos, Matteo Varvello, Benjamin Livshits, and Alexandros Kaprav-
elos. 2021. Towards realistic and reproducibleweb crawl measurements. In
Proceedings of the Web Conference 2021. (2021). doi:10.1145/3442381.3450050.
Beliz Kaleli, Manuel Egele, and Gianluca Stringhini. 2020. Studying the privacy
issues of the incorrect use of the feature policy. In Workshop on Measurements,
Attacks, and Defenses for the Web. doi:10.14722/madweb.2020.23014.

Jun Kokatsu. Permissions policy: self by default slides. (2023). https://docs.
google.com/presentation/d/1r-Io04zATUt4X2KyND16EoDiho5q56KdjqqfR5
U7XaY.

LiveChat. 2025. Livechat apps marketplace. https://www .livechat.com/
marketplace/.

LiveChat. 2025. Livechat customer service software. https://www.livechat.
com/.

Microsoft. 2025. Playwright. https://playwright.dev/.

[30]

(31]

32]

(35]
[36]

(37]

(39]
[40]

[41]

[52]

(53]

IMC ’25, October 28-31, 2025, Madison, W1, USA

Mozilla. 2020. Permissions policy standard position. https://github.com/mozilla/
standards- positions/issues/24.

Mozilla. 2023. Topics api. https://github.com/mozilla/standards- positions/
issues/622.

Kazuki Nomoto, Takuya Watanabe, Eitaro Shioji, Mitsuaki Akiyama, and Tat-
suya Mori. 2023. Understanding the inconsistencies in the permissions mecha-
nism of web browsers. Journal of Information Processing, 0. doi:10.2197/ipsjjip.
31.620.

Lukasz Olejnik, Gunes Acar, Claude Castelluccia, and Claudia Diaz. 2016. The
leaking battery. In Data Privacy Management, and Security Assurance. Joaquin
Garcia-Alfaro, Guillermo Navarro-Arribas, Alessandro Aldini, Fabio Martinelli,
and Neeraj Suri, (Eds.) doi:10.1007/978-3-319-29883-2_18.

Sebastian Roth, Timothy Barron, Stefano Calzavara, Nick Nikiforakis, and Ben
Stock. 2020. Complex security policy? a longitudinal analysis of deployed con-
tent security policies. In Network and Distributed System Security Symposium.
doi:10.14722/ndss.2020.23046.

Iskander Sanchez-Rola, Leyla Bilge, Davide Balzarotti, Armin Buescher, and
Petros Efstathopoulos. 2023. Rods with laser beams: understanding browser fin-
gerprinting on phishing pages. In 32nd USENIX Security Symposium (USENIX
Security 23). doi:10.5555/3620237.3620470.

Marius Steffens, Marius Musch, Martin Johns, and Ben Stock. 2021. Who’s host-
ing the block party? studying third-party blockage of csp and sri. In Network
and Distributed System Security Symposium. doi:10.14722/ndss.2021.24028.
Junhua Su and Alexandros Kapravelos. 2023. Automatic discovery of emerging
browser fingerprinting techniques. In The ACM Web Conference. (2023). doi:10.
1145/3543507.3583333.

Tobias Urban, Martin Degeling, Thorsten Holz, and Norbert Pohlmann. 2020.
Beyond the front page:measuring third party dynamics in the field. In Proceed-
ings of The Web Conference 2020. (2020). doi:10.1145/3366423.3380203.

Tobias Urban, Dennis Tatang, Martin Degeling, Thorsten Holz, and Norbert
Pohlmann. 2020. Measuring the impact of the gdpr on data sharing in ad
networks. In Proceedings of the 15th ACM Asia Conference on Computer and
Communications Security. (2020). doi:10.1145/3320269.3372194.

Can I Use. 2025. Can i use... support tables for html5, css3, etc. https://caniuse.
com/.

Can I Use. 2024. Permissions policy | can i use... support tables for html5, css3,
etc. https://caniuse.com/permissions-policy.

W3C. 2024. Clarify "shipped in chrome" for picture-in-picture github issue.
Github Issue. https://github.com/w3c/webappsec-permissions-policy/issues/
502.

W3C. 2022. Deny all like alias for the permission-policy: header discussion.
Github Issue. https://github.com/w3c/webappsec-permissions-policy/issues/
483.

W3C. 2025. Denying self while still allowing subframes discussion. Github
Issue. https://github.com/w3c/webappsec-permissions-policy/issues/480.
W3C. 2020. Feature registry discussion. Github Pull. https://github.com/w3c/
webappsec-permissions-policy/pull/366.

W3C. 2024. Js playgrounds leak permissions. guidelines and examples needed.
Github Issue. https://github.com/w3c/webappsec-permissions-policy/issues/
547.

W3C. 2024. Permissions policy standard. https://w3c.github.io/webappsec-
permissions-policy/.

W3C. 2024. Permissions standard. https://www.w3.org/TR/permissions/.
W3C. 2024. Permissions-policy header inheritance for local schemes specifica-
tion issue. https://github.com/w3c/webappsec-permissions-policy/issues/552.
W3C. 2024. Query: can trusted subframe allocate permission to one of it’s
cross-domain subframe. Github Issue. https://github.com/w3c/webappsec-
permissions-policy/issues/542.

W3C. 2024. Update features.md (e.g., ‘storage-access’ is missing) github issue.
Github Issue. https://github.com/w3c/webappsec-permissions-policy/issues/
551.

W3C. 2024. W3c media capture and streams standard. https://www.w3.org/
TR/mediacapture-streams/.

Web Platform Incubator Community Group. 2025. User-agent client hints.
https://wicg.github.io/ua-client-hints/.

WebKit. 2023. The topics api. https://github.com/WebKit/standards-positions/
issues/111.

WebKit Bugzilla. 2023. Implement permissions-policy http header. https://bugs.
webkit.org/show_bug.cgi?id=253126.

Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and Artur Janc.
2016. Csp is dead, long live csp! on the insecurity of whitelists and the future
of content security policy. In ACM SIGSAC Conference on Computer and
Communications Security. doi:10.1145/2976749.2978363.

WHATWG. 2025. Local-scheme - fetch standard. https://fetch.spec.whatwg.
org/#local-scheme.

Wei Xu, Fangfang Zhang, and Sencun Zhu. 2012. The power of obfuscation tech-
niques in malicious javascript code: a measurement study. In 7th International

https://doi.org/10.1145/3419394.3423626
https://www.invicti.com/blog/web-security/polyfill-supply-chain-attack-when-your-cdn-goes-evil/
https://www.invicti.com/blog/web-security/polyfill-supply-chain-attack-when-your-cdn-goes-evil/
https://www.w3.org/History/1989/proposal.html
https://www.w3.org/History/1989/proposal.html
https://doi.org/10.1007/978-3-030-15986-3_17
https://doi.org/10.14722/ndss.2016.23390
https://doi.org/10.1145/3485447.3512214
https://github.com/zakird/crux-top-lists/blob/main/data/global/202406.csv.gz
https://github.com/zakird/crux-top-lists/blob/main/data/global/202406.csv.gz
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1145/2976749.2978313
https://albertofdr.github.io/browser-permissions-tool/
https://zenodo.org/records/16921477
https://zenodo.org/records/16921477
https://github.com/AlbertoFDR/browser-permissions-odyssey/tree/main/specification-issue-poc/
https://github.com/AlbertoFDR/browser-permissions-odyssey/tree/main/specification-issue-poc/
https://github.com/AlbertoFDR/browser-permissions-odyssey/tree/main/specification-issue-poc/
https://developer.chrome.com/docs/crux/
https://doi.org/10.1145/3613904.3642252
https://doi.org/10.1145/3613904.3642252
https://doi.org/10.14722/ndss.2024.24108
https://doi.org/10.14722/ndss.2024.24108
https://har.fyi/
https://doi.org/10.1007/978-3-030-29962-0_28
https://doi.org/10.1007/978-3-030-29962-0_28
https://doi.org/10.1145/3442381.3450050
https://doi.org/10.14722/madweb.2020.23014
https://docs.google.com/presentation/d/1r-IoO4zATUt4X2KyND16EoDiho5q56KdjqqfR5U7XaY
https://docs.google.com/presentation/d/1r-IoO4zATUt4X2KyND16EoDiho5q56KdjqqfR5U7XaY
https://docs.google.com/presentation/d/1r-IoO4zATUt4X2KyND16EoDiho5q56KdjqqfR5U7XaY
https://www.livechat.com/marketplace/
https://www.livechat.com/marketplace/
https://www.livechat.com/
https://www.livechat.com/
https://playwright.dev/
https://github.com/mozilla/standards-positions/issues/24
https://github.com/mozilla/standards-positions/issues/24
https://github.com/mozilla/standards-positions/issues/622
https://github.com/mozilla/standards-positions/issues/622
https://doi.org/10.2197/ipsjjip.31.620
https://doi.org/10.2197/ipsjjip.31.620
https://doi.org/10.1007/978-3-319-29883-2_18
https://doi.org/10.14722/ndss.2020.23046
https://doi.org/10.5555/3620237.3620470
https://doi.org/10.14722/ndss.2021.24028
https://doi.org/10.1145/3543507.3583333
https://doi.org/10.1145/3543507.3583333
https://doi.org/10.1145/3366423.3380203
https://doi.org/10.1145/3320269.3372194
https://caniuse.com/
https://caniuse.com/
https://caniuse.com/permissions-policy
https://github.com/w3c/webappsec-permissions-policy/issues/502
https://github.com/w3c/webappsec-permissions-policy/issues/502
https://github.com/w3c/webappsec-permissions-policy/issues/483
https://github.com/w3c/webappsec-permissions-policy/issues/483
https://github.com/w3c/webappsec-permissions-policy/issues/480
https://github.com/w3c/webappsec-permissions-policy/pull/366
https://github.com/w3c/webappsec-permissions-policy/pull/366
https://github.com/w3c/webappsec-permissions-policy/issues/547
https://github.com/w3c/webappsec-permissions-policy/issues/547
https://w3c.github.io/webappsec-permissions-policy/
https://w3c.github.io/webappsec-permissions-policy/
https://www.w3.org/TR/permissions/
https://github.com/w3c/webappsec-permissions-policy/issues/552
https://github.com/w3c/webappsec-permissions-policy/issues/542
https://github.com/w3c/webappsec-permissions-policy/issues/542
https://github.com/w3c/webappsec-permissions-policy/issues/551
https://github.com/w3c/webappsec-permissions-policy/issues/551
https://www.w3.org/TR/mediacapture-streams/
https://www.w3.org/TR/mediacapture-streams/
https://wicg.github.io/ua-client-hints/
https://github.com/WebKit/standards-positions/issues/111
https://github.com/WebKit/standards-positions/issues/111
https://bugs.webkit.org/show_bug.cgi?id=253126
https://bugs.webkit.org/show_bug.cgi?id=253126
https://doi.org/10.1145/2976749.2978363
https://fetch.spec.whatwg.org/#local-scheme
https://fetch.spec.whatwg.org/#local-scheme

IMC ’25, October 28-31, 2025, Madison, W1, USA

Conference on Malicious and Unwanted Software. doi:10.1109/MALWARE.
2012.6461002.

[54] David Zeber, Sarah Bird, Camila Oliveira, Walter Rudametkin, Ilana Segall,
Fredrik Wollsén, and Martin Lopatka. 2020. The representativeness of auto-
mated web crawls as a surrogate for human browsing. In Proceedings of The
Web Conference 2020. (2020). doi:10.1145/3366423.3380104.

A Appendix
A.1 Ethics

We performed our crawl in an ethical and responsible manner to
not disturb websites. The crawl was designed to be non-intrusive
and low-impact. We conducted a single-pass crawl of one million
publicly accessible websites using a browser-based crawler. Each
site was visited only once, and we did not interact with forms or
other site elements beyond what is triggered during a standard
page load.

Regarding the responsible disclosure of the specification issue,
we followed established best practices. After identifying the prob-
lem, we reported our findings to the W3C specification group and
to a major browser vendor, providing sufficient detail to reproduce
the issue. Both acknowledged the report, however, as of one year
later, no fix or further communication has been provided.

A.2 Experimental Setup and Reproducibility

To ensure the reproducibility of our study, we report the criteria
described by Demir et al. [7].

A.2.1 Dataset. C1 For our analysis, we use the CrUX July 2024
list [8], which we include in our public repository [12]. From this
list, we select the top one million origins to construct our website
dataset. C2 As the CrUX list contains origins, we relied on it without
modification and visited each origin a single time given the scope
of the measurement. C3 We make the list openly available [12]. C4
We visit each origin only once, so multiple measurements do not

apply.

A.2.2 Experimental Design. C5 We relied on Playwright v1.45.1,
packaged in Microsoft’s Playwright Docker image (v1.46.0-jammy).
C6 We disabled the AutomationControlled Blink feature (navigat-
or.webdriver) to reduce detection and used Playwright’s built-in
scrolling function to trigger lazy-loaded iframes for complete data
collection. Instrumentation was injected via built-in functions be-
fore pages and documents loaded. Additionally, we implemented a
wrapper to perform multiple crawlers concurrently and store the
collected data in a database. C7 Besides the specified adjustments,
no additional modifications were made to the browser. C8 The
AutomationControlled Blink feature (navigator.webdriver)was
disabled to reduce bot detection. C9 We make the used framework
publicly available [12]. C10 Interaction was limited to scrolling
lazy-loaded iframes to trigger content loading. C11 For running the
measurement a headful stateless browser was used. When visiting
a page, the crawler waits up to 60 seconds for the load event. It then
remains on the page for an additional 20 seconds. If any lazy-loaded
iframes are detected, the crawler scrolls to them to trigger content
loading. After this period, a final data collection is performed, the
browser is closed, and the crawler proceeds to the next page. A
90-second timeout is set for each page visit, if exceeded, for example
due to many iframes, the page is marked as timed out. C12 We

Alberto Fernandez-de-Retana, Jannis Rautenstrauch, Igor Santos-Grueiro, and Ben Stock

conducted the crawl from Germany (EU). C13 The experiments
were conducted using Chromium version v127.0.6533.17, and
no further modifications were applied to the browser. C14 Upon
completion of a site crawl, all collected data for the site and its
embedded documents (see Section 3.1) are immediately saved to
the database.

A.2.3 Evaluation. C15 We will make our results publicly available.
C16 We elaborate on this point in Section 4. C17 We discuss limi-
tations in Section 6.1. C18 Ethical considerations are discussed in
Appendix A.1.

A.3 Experimental Validation of Static Method
via Manual Testing

This section aims to evaluate how well the static analysis approach
captures permission-related behavior compared to actual activated
permissions with user interactions. First, we ran our automated tool
to collect static and dynamic reports without any user interaction.
Next, we performed manual navigation of the pages, running the
tool in the background but adding interactions, including clicking
through pages of same origin, visiting multiple paths within the
same origin, and in some cases creating simple accounts. We ex-
tended manual navigation to multiple paths within the same origin
to provide a broader comparison with our approach, as some per-
missions may only be triggered on specific paths. This also allows
a limited evaluation of the known limitation of visiting only land-
ing pages. For each site, we compare the permissions observed in
the initial navigation without interaction against those collected
in a second run with interaction. This approach provides a more
complete view of the permissions a website may request, though
it remains limited; some accounts could not be created, and some
functionality (e.g., subscription-only features) remained inaccessi-
le.

We conducted three experiments, each with 25 websites, to cap-
ture the problem from three perspectives. The first dataset com-
prises sites showing static permission activity but no dynamic
activity randomly selected from the results of our measurement.
The second and third datasets were drawn from the HTTP Archive,
filtered by the categories "Ecommerce" and "Video players", respec-
tively. We used these website categories under the assumption that
they show higher levels of permission activity compared to others.
We restricted the websites to the top 5000 for the first dataset, and
to the top 1000 for the second and third.

Table 12 summarizes the results. It shows the average number of
permissions detected automatically by static and dynamic analyses
without user interaction, as done in the main measurement of this
paper. During two working days, a researcher interacted with the
sites while the tool was running, and the table reports the average
number of permissions activated through these manual interac-
tions. The final columns show how many of these permissions were
already captured by static analysis and the total captured when
including automated dynamic analysis, both of them without any
interaction or navigation across the website. In other words, we
compared the permissions observed at least once during the au-
tomatic crawl with those observed at least once during manual
experiment. Looking at the first experiment, websites chosen for
having no dynamic activity show a small average of 0.04%, caused

https://doi.org/10.1109/MALWARE.2012.6461002
https://doi.org/10.1109/MALWARE.2012.6461002
https://doi.org/10.1145/3366423.3380104

A Permissions Odyssey: A Systematic Study of Browser Permissions on Modern Websites

IMC ’25, October 28-31, 2025, Madison, W1, USA

Table 12: Manual Testing of Average Permission Detection Across Experiments

Experiment Information

Avg. Permissions Reported Detection Results

No Interaction Interaction

Experiment Dataset Details/Category # Static (+0) Dynamic (+o) Activated (+o) by Static by SUD
1 Results (Section 4) Static-Only 25 1.84 +1.28 0.04" 0.2 1.08 +£0.95 62.96% 62.96%
2 HTTP Archive [17] Ecommerce 25 1.56 +£2.33 0.44 +0.82 2.36 £1.70 22.03% 35.59%
3 HTTP Archive [17] Video Players 25 2.84+2.44 0.28+0.61 1.16 £1.25 56.67% 73.33%
Avg 2.08 0.25 1.53 40.52% 51.72%

* One site showed permission use, possibly due to content changes since the experiment.

by a single website that may have updated its content since the
experiment. No-interaction results show that across all three ex-
periments, the static approach reports a higher average number
of permissions than the dynamic approach. In two of the three ex-
periments, static reporting even exceeds the permissions activated
with manual interaction. This is likely due to several factors, such
as functionality that could not be manually triggered (e.g., behind
a login), dead code, a set of websites with unobfuscated code and
broken features, as observed in one of our experiments, for exam-
ple, a malfunctioning share button. Among the static permissions
reported, certain permissions, such as clipboard-write, geolocation,
and battery, appear consistently. Overall, the results indicate that
static analysis partially mitigates the limitations of non-interactive
crawling. Considering that the automated approach only visits land-
ing pages, whereas manual exploration traverses multiple paths
and loads additional content, static analysis proves to be a valuable
method to reduce the lack-of-interaction limitation.

A.4 Permission Usage

The complete list of instrumented permissions includes: accelerom-
eter, ambient-light-sensor, battery, bluetooth, browsing-topics, cam-
era, clipboard-read, clipboard-write, compute-pressure, direct-sockets,
display-capture, encrypted-media, gamepad, geolocation, gyroscope,
hid, idle-detection, keyboard-lock, keyboard-map, local-fonts, mag-
nenometer, microphone, midi, notifications, payment, pointer-lock,
publickey-credentials-create, publickey-credentials-get, push, screen-
wake-lock, serial, speaker-selection, storage-access, system-wake-lock,
top-level-storage-access, usb, web-share, window-management and
xr-spatial-tracking many which contain several instrumented APIs.

In addition to permissions, our instrumentation targets
the following general permission purpose APIs: Permis-
sions API (navigator.permissions), Permissions Policy API
(document.permissionsPolicy.”) and Feature Policy API (docu-
ment.featurePolicy.”) .

A.5 Embedded Documents with Potentially
Unused Delegated Permissions

Table 13 is an extended version of Table 10 and shows the top 30
embedded documents with unused delegated permissions showing
that there is a long tail of such iframes that are used on multiple
but not many websites. In connection with the delegation risks
described in our contribution, if any embedded company widget
is compromised, an attacker could exploit the delegated permis-
sions. The severity varies. Some permissions, such as sensors, may
pose low risk, while others, including camera, microphone, display-
capture, or payment, are highly sensitive. In particular, similar to
supply chain attacks, the scale of potentially affected websites is
concerning, especially since some widgets appear to receive per-
missions they do not actually require.

A.6 Permission Support Across Browsers

Figure 3 presents a screenshot of our tool’s results, which evaluate
permission support across browser vendors and their versions [11].
We periodically update the results with newer browser versions
and monitor source code to expand the list with new permissions.
The website also reports changes in browser permission support
across versions and tracks default allowlists for each permission.

A.7 Permissions-Policy Header Configuration
tools

Figure 4 presents a screenshot of the manual website tool that helps
developers configure the Permissions-Policy header based on
supported permissions [11]. The tool generates a header from the
supported permissions list obtained with our previously described
method. Additionally, it provides predefined options, such as dis-
abling all permissions or, more commonly, disabling only powerful
permissions. Compared to other online tools, our approach guaran-
tees that permissions and generated headers are always up to date,
including the latest permissions.

IMC ’25, October 28-31, 2025, Madison, W1, USA Alberto Fernandez-de-Retana, Jannis Rautenstrauch, Igor Santos-Grueiro, and Ben Stock

Browser Permissions Compatibility

15-05-2025

“This table contains information ahout browser compatibilty for certain features.
Note: The periodically and versions.
i il don't i

Y L 4

] T Chrome 136.0.7103.92 Chromium 136.0.7103.25 Firefox 137.0 Brave 1.78.97 WebKit 18.4

accelerometer V] [(sel [(sein X X [(seif) x x
accessiility-svents X X X X X X X x

all-screens-capture X X X X X X X X X X
ambient-light-sensor V] X X X X X X X
attribution-reporting x © X e X X X X X X
audio X X X X X X X X X X
autoil X X X X X X X X x x
autoplay X 17 (self) x [(sein X X x [(seir) x x
background-fetch V] X X X X X X X
background-sync V] X X X X X X X
battery X X X X X X X X X X
bluetooth X X X X X X X X X x
browsing-topics X © X mo X X X X x x
camera V] [(sein [(sein V] X [(seir) V] x
captured-surface-control V] 1% (self) 1 (self) X X [(self) X X
ch-device-memory X % (sel) X [(sein X X X [(sei) X X
ch-downiink X [(sein X [(sein X X X [(sein X X
ch-dpr X 17 (self) X [(sein X X X [(se) X X
ch-ect X [(seln X [(sein X X X [(sein x x
ch-prefers-color-scheme. X 17 (self) x 1% (seif) x X x [(sein x x
cheprefers-reduced-motion X 7 (self X (o) X X X o (seh) X X

Figure 3: Website showing permission support results.

Create Your Permissions-Policy Header

15-05-2025
Using the permission result ist, tis page fets you for your website. n this s, permissions that are vaiid or atleast one browser vendor. I this header, you can directves for

Mote: Even though you can use the ‘Disable Powerful Permissions' option, | highly recommend double-checking manually.

Inspired by permissionspolicy.com

Exanple

o of Permissions: 27

No of Byres: 524

Pernissions-Policy: accelerometer=(), anbient-light-sensor=(), autoplay=(), battery=(). canera=(), lated=(), displ e=(). d domain=(), encrypted-media=(}, tion-while-not- rendered=(}, fon-while-out-of-viewport=(), fullscreen=(),
geolocation=(), gyroscope=(), keyboard-map=(), magnetometer=(), microphone=(), midi=(), navigation-override=(), payment=(), picture-in-picture=(), publickey-credentials-get=(), screen-wake-lock=(), sync-xhr=(), usb=(), web-share=(), xr-spatial-tracking=()

Disable All Permissions. Disable Powerful Permissions
[e e -

accelerometer o

<]

atiribution-reporting

autoplay s (O separted by semicoin] «

browsing-topics e by semicoin] ‘

camera

B E X X X
o

captured-surface-control oy semicolon] ‘

ch-device-memory STy semicolon

ch-downiink

chedpr

ch-ect et by semicoin] [

ch-prefers-color-scheme. el by semicoion] [

ch-prefers-teduced-motion

chrtt

ch-save-data

X X X X X X X X X
o

chua Ty semicolen

Figure 4: Website for header configuration tool for supported permissions.

A Permissions Odyssey: A Systematic Study of Browser Permissions on Modern Websites

IMC ’25, October 28-31, 2025, Madison, W1, USA

Table 13: Top 30 Embedded Documents with Potentially Unused Delegated Permissions

Embedded Iframe Potentially Unused Permissions # Affected Websites
youtube.com accelerometer, gyroscope 16,394
livechatinc.com microphone, clipboard-read, camera 13,734
facebook.com clipboard-write, web-share, encrypted-media 1,405
youtube-nocookie.com gyroscope, accelerometer 982
razorpay.com payment, clipboard-write, camera 389
ladesk.com microphone, camera 303
driftt.com encrypted-media 285
wixapps.net microphone, camera, geolocation 246
qualified.com microphone, camera 109
dailymotion.com accelerometer, gyroscope, clipboard-write, web-share, encrypted-media 101
tinypass.com payment 99
imbox.io camera, microphone 93
piano.io payment 92
appspot.com camera, microphone, geolocation 91
facebook.net encrypted-media 81
visitor-analytics.io camera, microphone, geolocation 78
glassix.com camera, microphone, display-capture 76
giosg.com camera, microphone, screen-wake-lock, display-capture 56
cloudflarestream.com accelerometer, gyroscope 55
mediadelivery.net accelerometer, gyroscope 55
socialminer.com clipboard-read 54
infobip.com camera, microphone 46
kenyt.ai camera, microphone 45
vidyard.com camera, microphone, clipboard-write, display-capture 44
jotform.com camera, geolocation, microphone 33
wolkvox.com encrypted-media, camera, microphone, geolocation, display-capture, midi 33
typeform.com camera, microphone 31
mitel.io camera, geolocation, microphone 30
videodelivery.net accelerometer, gyroscope 30
channels.app encrypted-media, midi 30
Total (any iframe) 36,307

	Abstract
	1 Introduction
	2 Background
	2.1 Browser Permissions
	2.2 Permissions Policy

	3 Methodology
	3.1 Framework Overview
	3.2 Measurement Instantiation

	4 Measurement In The Wild
	4.1 Permission Usage
	4.2 Policy-Controlled Permission Delegation
	4.3 Permission Control: Permissions-Policy Header and Feature-Policy Header

	5 Permission Delegation to Embedded Iframes
	5.1 Customer Support Widgets
	5.2 LiveChat Case Study
	5.3 Recommendations

	6 Discussion
	6.1 Limitations
	6.2 Shortcomings in Specifications
	6.3 Facilitating Defense Deployment

	7 Related Work
	8 Conclusion
	A Appendix
	A.1 Ethics
	A.2 Experimental Setup and Reproducibility
	A.3 Experimental Validation of Static Method via Manual Testing
	A.4 Permission Usage
	A.5 Embedded Documents with Potentially Unused Delegated Permissions
	A.6 Permission Support Across Browsers
	A.7 Permissions-Policy Header Configuration tools

